UNDERGRADUATE

AM U S H G DeteCting Ha rdwa re TEXAS A&M UNIVERSITY
: TR " | Engineering
SUMMER RESEARCH Securlty VUlnerabllltleS

Jayden Koh, Chen Chen, Jeyavijayan Rajendran
SETH Lab, Texas A&M University

Statement of Problem & Justification

1 G RANT

Research Question Hardware vulnerabilities Research Objective
., 1000 816 are emerging at an - Analyze the hardware design of several popular cores: RSD, XiangShan, and CVAG.
L 92 alarming rate. - Use novel hardware fuzzing techniques to identify functional vulnerabilities.
5 100 36 33 48 41 98 __ 97 . . . e . :
> 13 g g 16 17 - Bridge the gap between industrial verification flow and academic research.
SRR R 111 (111 (] | e ' *
* 4 mm] H vulnerabilities are C/ Effort Cost of
g [»
2001 2006 2011 2016 2021 difficult to patch. , fixes
Year VERILATOR
Figure 1: The number of hardware vulnerability discoveries is exponentially rising. SPECTRE Dealing
iati with
Current hardware security Ll I Pros Cons
measures are insufficientin Formal Verification Exhaustively Secure Not scalable
catching bugs at the pre- Security Auditing Context-Aware Manually intensive >
silicon stage. Directed Tests Automated Lack of coverage Design Build Test Deploy lime
Figure 2: Discovering hardware bugs in the design stage decreases
Information Flow Tracking Targeted coverage spaces False positives the costs of maintaining and patching processors.
Study Desigh & Methods
StUdy 933|gn Software differential fuzzing techniques were adapted to Methodology
I % compare trace logs from hardware simulations. Differences T S e " ERAEAAAE T |
m— p— N o in trace logs revealed functional bugs as the processor was i oeeds _;_L nput ()} Processorf C?olden
e ' not performing to the specification of the official ISA. t | frooo10] eee forrorof [7 ¢ S : , ~ reierence
'-'-l"r kh_tJEErIEFUT€Ir1JJ F) g; F) i 100101 101 1 : E '(jfitfit)€355(3 ...lp \‘]{1 'QE;! : rT]()(jEBI :
? . - S | ! i |
IZI Processor (DUT) = Differences from existing hardware verification methods: . T R l T . g |
: E— i . - Feedback | || |
input Increased Scalability ' | Instruction | 11| Mutation - Ak |
I I — : 1 engine engine g |
m——— | . . | generator | 1. 1= Ak |
—— o Increased Automation | ' | :E:_ 1} R |
ehaviorz ' - Pl E : : : Comparator | |
Golden N’ Increased Coverage v Al BE >3 I >-|0 ! |
_p ' Seed generator, | Stimulus generator ' 1 Bug detection |
Reference Model Decreased False Positives v HEEE et B e e R T
Figure 4: TheHuzz framework for hardware fuzzing.

Figure 3: Differential fuzzing is a technique for detecting functional bugs in software.

Data Analysis & Interpretation
Data Results

The vulnerability regarding failure to throw illegal instruction
exception is described with a simulation waveform for visual
verification, trace logs for automated verification, and an assembly
exploit for replicating the vulnerability.

One of the vulnerabilities found with hardware
fuzzing is described below:

asm volatile ("CSRR t@, mstatus”);
asm volatile ("LI t1, OxFFFFF7FF");
asm volatile ("AND te, t@, ti1");

asm volatile ("CSRW mstatus, te");

Figure 6: Simulation waveform showing the processor switching privilege Atotal of 6 zero-day bugs were discovered in the RSD processor including:

asm volatile ("ADDI x@, x@, 0"); contexts from Machine to Supervisor. - Unvalidated FS flag

asm volatile ("ADDI x@, x@, 0");
B S 9, BJ - ’ 00001bb® <supervisor_mode_code>: - Unhandled FS ﬂag
asm volatile X0, xO,)5 1bbe: 123452b7 lui t®,0x12345

1bbu: 67828293 addi te,te, 1656 # - Unhandled SD flag
1bb8: dae29e73 CSI'W scountovf,k te M h .t bl SD fl
asm volatile ("LA t@, supervisor_mode_code™); Figure 7: Executable binary showing an illegal instruction in supervisor-mode.) achine writable ag
asm volatile ("CSRW mepg, t6); neps - Userreadable MPP flag
asm volatile "MRET"); 5261, Eell:, Ox0P000000, Ox000O1010 .
, 0x600000600, 0x66006906, 0x00880080, Ox68 - Unhandled writable MPP flag \ / JVN
886686 ,8x800006080 6xBB800060L0 ,BxbBBBvBees |
, Ex00000600 ,0x00000000 , Oxb000E8000 , BXxBB00
asm volatile ("ADDI x@, x0, 0"); | 5253,m,.:ngaagmzrﬁ,G.xﬁﬁgr.}}ﬁm 31 38 _ | | _ 2 24 23 22 21 20 19 18 17 16
asm volatile ("ADDI x0, xe, 0"); 566000, 6x00890000, 0x00090000, 6X0BBBEBEE, | S0 o wemr sor | seere | TsR | Tw | TvM | mxR | sum | MPRV | xsit
asm volatile ("ADDI x@, x@, 0™); ,0x00000000, 6x00000000 , 0x00PBEOLO , OXBO0O 15 14 13 12 11 10 o 8 K 6 : 4 3 5 1 5
5278, REL: , Ox00000000, Ox00001010 - v -
J, 0x00006000 , 6x0E0BDOEE0, Bx0000L0E0 , BXxBBBE X5[1:8] F5[1:8] MFPP[1:6] VS[1:8) SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI
PEOOO0 , Ox00PPHON0 , OXx0BEPOBO0 , Ox00BEEBE0 ' ’ ‘
asm volatile (“supervisor _mode code:™); , 9x66966000, 8x66686660, 6x86660000, 6x6666 Figure 9: Affected fields in the mstatus CSR register on the RSD processor.
:22 :zi::iiz ::E;R;aéxﬁzzfgigf?fj); Figure 8: Program does not crash on illegal instruction exception. All bugs were responS|bly and ethically disclosed by prOV|d|ng 3
Figure 5: Contents of an assembly exploit that show the technical writeup to the product’s authors and a high-level overview
unexpected behavior with supervisor privilege mode. to their respective security authorities for official acknowledgement.
Conclusion Further Research
Each individual bug discovered from this work could lead to: | Further research will be conducted to determine:
- Privilege escalation e - Efficacy of hardware differential fuzzing across
- Isolation bypassing f'\' other processors (XiangShan, CVA6S+)
- Silent failures i | - Root cause of the 6 RSD vulnerabilities within
With an average recommended CVSS v4.0 score of 9.3/10 “Critical”, the bugs found in this the source code “
work have serious implications on the entire execution process of the RSD processor. - Optimizing input generation and mutations to e
o : iIncrease search space and coverage
Main Memary These results show that hardware fuzzing is an effective method of , , .p , 8 .
. : . - Integration with existing hardware verification
o verifying the architectural security of open-source processors. , ,
Dita HI l Instructio methods as a hybl’ld solution v | e
buses buses
- : . : : : - Reducing false positives in the bug detection
%’/ & | Additionally, the discovery of such severe implementation flaws of the ocessg |p | 8 Mutation Feedback
- b b ° r tual Machine | Container | . I
j&*' - ih RISC-V ISA demonstrates the insufficiency of current hardware P i Ce==e=weeeeeceseeeeess . engine Slhls
- : . .y . : | e = : -«
T verification practices. These findings highlight the urgent need for the :‘ [Applications ‘ ‘ B service: ‘: , — g B
integration of a complete hardware fuzzing validation suite to mitigate ‘ o ©° SO iy _',:" > >
10 Ll o ' -
the potential for critical architectural exploits that other methods RISC-\/° ﬁ} | Stimulus generator

might miss.

	Slide 1

