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Statement of Problem & Justification
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Research Question Hardware vulnerabilities Research Objective
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Figure 2: Discovering hardware bugs in the design stage decreases
Information Flow Tracking  Targeted coverage spaces False positives the costs of maintaining and patching processors.
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Figure 4: TheHuzz framework for hardware fuzzing.

Figure 3: Differential fuzzing is a technique for detecting functional bugs in software.

Data Analysis & Interpretation
Data Results

The vulnerability regarding failure to throw illegal instruction
exception is described with a simulation waveform for visual
verification, trace logs for automated verification, and an assembly
exploit for replicating the vulnerability.

One of the vulnerabilities found with hardware
fuzzing is described below:

asm volatile ( "CSRR t@, mstatus” );
asm volatile ( "LI t1, OxFFFFF7FF" );
asm volatile ( "AND te, t@, ti1" );

asm volatile ( "CSRW mstatus, te" );

Figure 6: Simulation waveform showing the processor switching privilege Atotal of 6 zero-day bugs were discovered in the RSD processor including:

asm volatile ( "ADDI x@, x@, 0" ); contexts from Machine to Supervisor. - Unvalidated FS flag

asm volatile ( "ADDI x@, x@, 0" );
B S 9, BJ - ’ 00001bb® <supervisor_mode_code>: - Unhandled FS ﬂag
asm volatile X0, xO, )5 1bbe: 123452b7 lui t®,0x12345

1bbu: 67828293 addi te,te, 1656 # -  Unhandled SD flag
1bb8: dae29e73 CSI'W scountovf,k te M h .t bl SD fl
asm volatile ( "LA t@, supervisor_mode_code™ ); Figure 7: Executable binary showing an illegal instruction in supervisor-mode. ) achine writable ag
asm volatile ( "CSRW mepg, t6 ); neps - Userreadable MPP flag
asm volatile "MRET" ); 5261, Eell:, Ox0P000000, Ox000O1010 .
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asm volatile ( “supervisor _mode code:™ ); , 9x66966000, 8x66686660, 6x86660000, 6x6666 Figure 9: Affected fields in the mstatus CSR register on the RSD processor.
:22 :zi::iiz ::E;R;aéxﬁzzfgigf?fj ); Figure 8: Program does not crash on illegal instruction exception. All bugs were responS|bly and ethically disclosed by prOV|d|ng 3
Figure 5: Contents of an assembly exploit that show the technical writeup to the product’s authors and a high-level overview
unexpected behavior with supervisor privilege mode. to their respective security authorities for official acknowledgement.
Conclusion Further Research
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