
The vulnerability regarding failure to throw illegal instruction
exception is described with a simulation waveform for visual
verification, trace logs for automated verification, and an assembly
exploit for replicating the vulnerability.

A total of 6 zero-day bugs were discovered in the RSD processor including:
- Unvalidated FS flag
- Unhandled FS flag
- Unhandled SD flag
- Machine writable SD flag
- User readable MPP flag
- Unhandled writable MPP flag

Detecting Hardware
Security Vulnerabilities

Jayden Koh, Chen Chen, Jeyavijayan Rajendran
SETH Lab, Texas A&M University

Statement of Problem & Justification
Research Question Research Objective

- Analyze the hardware design of several popular cores: RSD, XiangShan, and CVA6.
- Use novel hardware fuzzing techniques to identify functional vulnerabilities.
- Bridge the gap between industrial verification flow and academic research.

Further research will be conducted to determine:
- Efficacy of hardware differential fuzzing across

other processors (XiangShan, CVA6S+)
- Root cause of the 6 RSD vulnerabilities within

the source code
- Optimizing input generation and mutations to

increase search space and coverage
- Integration with existing hardware verification

methods as a hybrid solution
- Reducing false positives in the bug detection

process

Figure 4: TheHuzz framework for hardware fuzzing.

Processor (DUT)

Golden
Reference Model

Figure 3: Differential fuzzing is a technique for detecting functional bugs in software.

Figure 6: Simulation waveform showing the processor switching privilege
contexts from Machine to Supervisor.

Software differential fuzzing techniques were adapted to
compare trace logs from hardware simulations. Differences
in trace logs revealed functional bugs as the processor was
not performing to the specification of the official ISA.

Differences from existing hardware verification methods:

Figure 9: Affected fields in the mstatus CSR register on the RSD processor.

Each individual bug discovered from this work could lead to:
- Privilege escalation
- Isolation bypassing
- Silent failures
With an average recommended CVSS v4.0 score of 9.3/10 “Critical”, the bugs found in this
work have serious implications on the entire execution process of the RSD processor.

All bugs were responsibly and ethically disclosed by providing a
technical writeup to the product’s authors and a high-level overview
to their respective security authorities for official acknowledgement.

Figure 7: Executable binary showing an illegal instruction in supervisor-mode.

2 2 3
1

5 5
13 7 8 6

1
3

8
16

6
17

36 33 48 41 58 92 57

816

1

10

100

1000

2001 2006 2011 2016 2021

ne

w
 C

VE
s

Year

Existing Method Pros Cons
Formal Verification Exhaustively Secure Not scalable
Security Auditing Context-Aware Manually intensive
Directed Tests Automated Lack of coverage
Information Flow Tracking Targeted coverage spaces False positives

Figure 1: The number of hardware vulnerability discoveries is exponentially rising.

Current hardware security
measures are insufficient in
catching bugs at the pre-
silicon stage.

Figure 2: Discovering hardware bugs in the design stage decreases
the costs of maintaining and patching processors.

Hardware vulnerabilities
are emerging at an
alarming rate.

Hardware
vulnerabilities are
difficult to patch.

Study Design Methodology

Results

Further ResearchConclusion

Study Design & Methods

Data Analysis & Interpretation

Discussion & Conclusion

Data

Figure 8: Program does not crash on illegal instruction exception.

Figure 5: Contents of an assembly exploit that show the
unexpected behavior with supervisor privilege mode.

One of the vulnerabilities found with hardware
fuzzing is described below:

These results show that hardware fuzzing is an effective method of
verifying the architectural security of open-source processors.

Additionally, the discovery of such severe implementation flaws of the
RISC-V ISA demonstrates the insufficiency of current hardware
verification practices. These findings highlight the urgent need for the
integration of a complete hardware fuzzing validation suite to mitigate
the potential for critical architectural exploits that other methods
might miss.

Increased Scalability

Increased Automation

Increased Coverage

Decreased False Positives

	Slide 1

